精品一区二区三区影院在线午夜-精品无码三级在线观看视频-交换交换乱杂烩系列yy-亚洲精品无码不卡av-美女毛片一区二区三区四区

技術文章/ article

您的位置:首頁  -  技術文章  -  核苷逆轉錄酶 (nucleoside reverse transcriptase) 抑制劑——拉米夫定

核苷逆轉錄酶 (nucleoside reverse transcriptase) 抑制劑——拉米夫定

更新時間:2024-01-12      瀏覽次數:4044

Lamivudine  


CAS號134678-17-4

英文名Lamivudine  

中文名拉米夫定

Synonyms: 拉米夫定; BCH-189

純度99+%

Formula  C8H11N3O3S          分子量  229.26

Appearance   White to off-white solid

生物活性Lamivudine (BCH-189) is an orally active nucleoside reverse transcriptase inhibitor (NRTI). Lamivudine can inhibit HIV reverse transcriptase 1/2 and also the reverse transcriptase of hepatitis B virus. Lamivudine salicylate can penetrate the CNS.

Lamivudine (BCH-189) 是一種具有口服活性的核苷逆轉錄酶 (nucleoside reverse transcriptase) 抑制劑 (NRTI)Lamivudine 可以抑制 HIV 逆轉錄酶 1 2 以及乙型肝炎病毒 (hepatitis B virus) 的逆轉錄酶。Lamivudine 可以透過血腦屏障。

研究領域

Reverse Transcriptase (逆轉錄酶)

Reverse transcriptases (RTs) are enzyme used to generate complementary DNA (cDNA) from an RNA template, a process termed reverse transcription. Reverse transcriptases (RTs) use an RNA template and a short primer complementary to the 3' end of the RNA to direct the synthesis of the first strand cDNA.

Nucleoside reverse transcriptase inhibitors (NRTIs) block reverse transcriptase (an HIV enzyme). Non-nucleoside reverse transcriptase inhibitors (NNRTIs) bind to and block HIV reverse transcriptase. HIV uses reverse transcriptase to convert its RNA into DNA (reverse transcription). Blocking reverse transcriptase and reverse transcription prevents HIV from replicating.

HIV (人類免疫缺陷病毒)

Human immunodeficiency virus

HIV (Human immunodeficiency virus) is a lentivirus (a subgroup of retrovirus) that causes the acquired immunodeficiency syndrome (AIDS), a condition in humans in which progressive failure of the immune system allows life-threatening opportunistic infections and cancers to thrive. Infection with HIV occurs by the transfer of blood, semen, vaginal fluid, pre-ejaculate, or breast milk. Within these bodily fluids, HIV is present as both free virus particles and virus within infected immune cells. HIV infects vital cells in the human immune system such as helper T cells (specifically CD4+ T cells), macrophages, and dendritic cells. HIV infection leads to low levels of CD4+ T cells through a number of mechanisms, including apoptosis of uninfected bystander cells, direct viral killing of infected cells, and killing of infected CD4+ T cells by CD8 cytotoxic lymphocytes that recognize infected cells. When CD4+ T cell numbers decline below a critical level, cell-mediated immunity is lost, and the body becomes progressively more susceptible to opportunistic infections.

Anti-infection (抗感染)

Anti-infectives are drugs that can either kill an infectious agent or inhibit it from spreading. Anti-infectives include antibiotics and antibacterials, antifungals, antivirals and antiprotozoals.

Antibiotics specifically treat infections caused by bacteria, most commonly used types of antibiotics are: Aminoglycosides, Penicillins, Fluoroquinolones, Cephalosporins, Macrolides, and Tetracyclines. New other approaches such as photodynamic therapy (PDT) and antibacterial peptides have been considered as alternatives to kill bacteria.

The high rates of morbidity and mortality caused by fungal infections are associated with the current limited antifungal arsenal and the high toxicity of the compounds. The most common antifungal targets include fungal RNA synthesis and cell wall and membrane components, though new antifungal targets are being investigated.

Viral infections occur when viruses enter cells in the body and begin reproducing, often causing illness. Viruses are classified as DNA viruses or RNA viruses, RNA viruses include retroviruses, such as HIV, are prone to mutate. The currently available antiviral drugs target 4 main groups of viruses: herpes, hepatitis, HIV and influenza viruses. Drug resistance in the clinical utility of antiviral drugs has raised an urgent need for developing new antiviral drugs.

Antiprotozoal drugs are medicines that treat infections caused by protozoa. Of which, malaria remains a major world health problem following the emergence and spread of Plasmodium falciparum that is resistant to the majority of antimalarial drugs. At present, antimalarial discovery approaches have been studied, such as the discovery of antimalarials from natural sources, chemical modifications of existing antimalarials, the development of hybrid compounds, testing of commercially available drugs that have been approved for human use for other diseases and molecular modelling using virtual screening technology and docking.

HBV (乙型肝炎病毒)

Hepatitis B virus

HBV (Hepatitis B virus), abbreviated HBV, is a species of the genus Orthohepadnavirus, which is likewise a part of the Hepadnaviridae family of viruses. HBV causes the disease hepatitis B. The hepatitis B virus is classified as the type species of the Orthohepadnavirus, which contains three other species: the Ground squirrel hepatitis virus, Woodchuck hepatitis virus, and theWoolly monkey hepatitis B virus. The genus is classified as part of the Hepadnaviridae family. HBV is divided into four major serotypes (adr, adw, ayr, ayw) based on antigenic epitopes present on its envelope proteins, and into eight genotypes (A–H) according to overall nucleotide sequence variation of the genome. The genotypes have a distinct geographical distribution and are used in tracing the evolution and transmission of the virus. Differences between genotypes affect the disease severity, course and likelihood of complications, and response to treatment and possibly vaccination.

參考文獻

[1]. Colledge D, et al. Synergistic inhibition of hepadnaviral replication by lamivudine in combination with penciclovir in vitro. Hepatology. 1997 Jul;26(1):216-25.

[2]. Olaniyan LW, et al. Lamivudine-Induced Liver Injury. Open Access Maced J Med Sci. 2015 Dec 15;3(4):545-50.  

[3]. Mdanda S, et al. Zidovudine and Lamivudine as Potential Agents to Combat HIV-Associated Neurocognitive Disorder. Assay Drug Dev Technol. 2019 Oct;17(7):322-329.


公司簡介  >  在線留言  >  聯系我們  >  

CONTACT

辦公地址:中國(上海)自由貿易試驗區臨港新片區新楊公路1666號3幢315室 EMAIL:2885066715@qq.com
掃碼關注公眾號
版權所有©2025 凱立德生物醫藥技術(上海)有限公司 All Rights Reserved   備案號:滬ICP備15046197號-1   sitemap.xml技術支持:化工儀器網   管理登陸

TEL:021-58180488

掃碼關注公眾號
主站蜘蛛池模板: 人人爽人人爽人人片a免费| 人妻人人添人妻人人爱| 国产精品少妇酒店高潮| 国产亚洲欧美精品永久| 亚洲国产激情一区二区三区| 国产精品久久人妻无码网站蜜臀| 777爽死你无码免费看一二区| 久久高清内射无套| 亚洲人成在线观看| 国产二级一片内射视频插放| 中文字幕理伦午夜福利片| 欧美日本一区二区视频在线观看| 亚洲色成人网站永久| 熟女少妇在线视频播放| av无码av天天av天天爽| 亚洲精品拍拍央视网出文| 欧洲美女粗暴牲交免费观看| 人人妻人人澡人人爽欧美一区| 激情综合色五月丁香六月欧美| 丰满人妻无码∧v区视频| 美女裸体跪姿扒开屁股无内裤| 久久精品国产国产精品四凭 | 色77久久综合网| 黑人狠狠的挺身进入| 人妻少妇heyzo无码专区| 午夜一区二区国产好的精华液| 欧美亚洲国产第一精品久久| 2019最新国产不卡a| 十八禁视频网站| 国产又粗又硬又大爽黄老大爷视频| 亚洲男人av天堂男人社区| 久久久久波多野结衣高潮| 日产精品一卡2卡三卡4乱码| 日本乱子伦一区二区三区| 天天狠天天透天干天天| 国产精品毛片无遮挡高清| 小泽玛莉亚一区二区视频在线| 免费无码在线播放av| 国产成人综合在线视频| 久久婷婷色五月综合图区| 久久亚洲精品成人无码网站夜色 |